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We present an exact solution of percolation in a generalized class of Watts-Strogatz graphs defined on a
one-dimensional underlying lattice. We find a nonclassical critical point in the limit of the number of long-
range bonds in the system going to zero, with a discontinuity in the percolation probability and a divergence in
the mean finite-cluster size. We show that the critical behavior falls into one of three regimes depending on the
proportion of occupied long-range to unoccupied nearest-neighbor bonds, with each regime being characterized
by different critical exponents. The three regimes can be united by a single scaling function around the critical
point. These results can be used to identify the number of long-range links necessary to secure connectivity in
a communication or transportation chain. As an example, we can resolve the communication problem in a
game of “telephone.”
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I. INTRODUCTION

A. Small-world networks

In a 1967 study on social networks �1�, Stanley Milgram
found that on average a randomly chosen person in the mid-
west USA could be connected to a target person in Massa-
chusetts through a string of first-name acquaintances in only
six steps. While this notion of “six degrees of separation”
rapidly acquired folkloric status in popular culture �2�, the
structure of the underlying networks remained largely unex-
plored until recently. The “smallness” was attributed to the
logarithmic scaling with graph size of distances between
nodes on random graphs �3�. Actual social networks are far
from random, however. Today, social and other networks are
frequently described as consisting of mutually intercon-
nected local groups together with some far-flung ties �4�.
Interest in the properties of such partially ordered networks
was sparked by the work of Watts and Strogatz �5�, who in
1998 introduced and studied numerically a “small-world”
network model in which a controlled degree of disorder is
introduced into initially ordered graphs by randomly rewir-
ing some fraction of their links. A schematic representation
of a small-world graph is depicted in Fig. 1�b�.

Watts and Strogatz’s observation that even a small degree
of randomness changes the scaling of the minimum graph
distance between randomly chosen nodes, l, with the total
number of nodes, N, from the linear behavior of ordered
graphs to the logarithmic scaling associated with random
graphs provoked a flurry of interest. The scale dependence of
l has been obtained by renormalization-group �6� and mean-
field analysis �7�. In particular, Moukarzel �8� showed that
for systems of size L on a d-dimensional underlying lattice
there is a crossover length rc� log�pL�, where p is the den-
sity of shortcuts, such that, on a scale r�rc, l�r� scales as r,
whereas on larger scales l�r��rc.

Today, the term small world has come to describe any
system displaying a combination of strong local clustering
with a small graph diameter. Mathias and Gopal �9� have

shown that optimization of a regular graph for high connec-
tivity and low total bond length gives rise to small-world
behavior. Interestingly, the optimized graphs are distin-
guished by the generation of a relatively small number of
highly connected “hub” vertices rather than a random distri-
bution of long-range links as in the Watts-Strogatz �WS�
model. Hub-dominated networks are also generated by a
model for a dynamically expanding graph proposed by
Barabási and Albert �10� to explain the scale-free �i.e.,
power-law� distribution in vertex connectivity common to

(a) (b)

(c) (d)

FIG. 1. Examples of small-world graphs: �a� a fully connected
ordered ring with N=20 vertices. �b� A graph generated by the
original Watts-Strogatz algorithm with k=1 and pl=�=1 /5, giving
ps=4 /5. Note that every long-range link is created by reattaching
the far end of the broken short-range link. �c� The Watts-Strogatz
variant used for analytical calculations. Again k=1 and �=1 /5 but
this time the addition of long-range bonds and deletion of short-
range bonds is carried out independently; this makes the appearance
of disconnected �finite� clusters more likely but does not prevent the
appearance of small-world behavior. �d� A generalized Watts-
Strogatz graph with k=1, p= pl=1 /4, and n=1 /2, giving ps=1 /2.
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many real-world networks, such as the world-wide web and
the science citation database. For scale-free networks, it has
been shown �11–13� that the network is even smaller than
small-world networks, i.e., has a sublogarithmic average dis-
tance between nodes. A further study of real-world networks
by Amaral et al. �14� discerned two other classes of behavior
in small-world networks in addition to scale-free graphs,
characterized by truncated power-law and rapidly decaying
connectivities, respectively, and proposed how such behavior
can arise due to constraints placed on the Albert-Barabási
model.

In addition to work on the properties of small-world net-
works themselves, recent attention has focused on the behav-
ior of physical systems defined on small-world graphs, in-
cluding Ising models �15,16�, neural networks �17�, and
random walks �18,19�. There has also been work on models
of disease epidemics using site and bond percolation defined
on small-world graphs �see, e.g., Refs. �20–22�� as described
below. Evolving contagion processes on small-world net-
works have been investigated in Ref. �23�, and the dynamical
response of complex networks due to external perturbations
is studied in Refs. �24,25�. The analysis of implications of
small-world networks for goal directed social network be-
havior is presented in Ref. �26�. Results for searching in
small-world networks can be found in �27,28�. For some
contemporary reviews of small-world networks and net-
works in general, see, e.g., Refs. �29–33�.

The wide ranging interest and implications of small-world
networks have also led to a need for precise understanding
and, where possible, exact solutions of the fundamental
properties of these networks. In this paper we focus on iden-
tifying unusual properties that arise in the case of small-
world networks on an underlying one-dimensional lattice.
We provide exact solutions for a generalized model and
study the behavior in the limit of few long-range links—a
limit we find is very sensitive to the manner in which it is
obtained. We also point to practical implications for securing
connectivity in one-dimensional transportation and commu-
nication chains, showing how failure of some local links is
overcome by the existence of long-range links.

B. Percolation on small-world graphs

Percolation is quite sensitive to the geometry of the un-
derlying lattice. One-dimensional lattices are generally inap-
propriate for representing the graph underlying social net-
works; however, they may be appropriate in specific
contexts. Consider, for instance, a chain of islands, cities, or
nodes in an ad hoc or wired network situated in a nearly
linear formation, say along a road. Such a configuration is
extremely sensitive to breakdown, if even a small number of
the links connecting the nodes is removed. This follows from
the well-known result that one-dimensional systems only
percolate in the limit of zero failure rate. To fortify the struc-
ture of such a network, random long-range links may be
added that can backup missing short-range bonds. For road
transportation long-range bonds may be added by airlines or
boat lines while for wired communications long-range bonds
might be provided by microwave or satellite communication

links. The important question: “how many long-range links
are needed to replace an �expected� number of short-range
failed links?” is addressed in this paper. It should be noted
that a similar problem for square lattices was studied in Ref.
�34�.

For a simple ring structure it will be shown that, for any
constant ratio of long-range bonds added to replace removed
short-range bonds, some nodes remain isolated from the rest.
However, if only a quarter of the number of the failed short-
range bonds exist as long-range shortcuts, the chain is not
broken—a giant connected component exists comprising a
constant fraction of the nodes.

As an example, this shows how to achieve reliable com-
munication in a game of “telephone.” In the game, one per-
son tells a second person something, the second tells a third,
and so on down a chain. For a long chain, and even a rea-
sonably short chain, errors garble the communication. Our
results show that if there are also long-range links of com-
munication along the chain, comprising a quarter of the
short-range links, the random errors that are formed do not
cause errors in the answer.

We note the difference in behavior of short-range and
long-range fortifying links. Short-range fortification in a
k-ring architecture, in which each node is connected to its 2k
nearest neighbors leads to an exponentially decreasing prob-
ability of disconnection in k. Still, in the limit of long enough
chains, a fixed k implies that a chain always breaks. More-
over, this method of reinforcement is expensive in the num-
ber of links needed. The probability of a node being discon-
nected from all nodes in one direction is pk. This is a lower
bound on the probability of a break in the chain at some
node. This probability is independent for nodes that are k
hops apart. The probability of a chain starting at some node
to be at least of length n is bounded by �1− pk�n/k. This de-
cays exponentially with n. Therefore, for constant p and k,
the probability of finding a chain of length of order N is
vanishingly small unless k=O�ln N�. Thus, resiliency to ran-
dom failure requires at least O�N ln N� bonds �corresponding
to the known collapse of the one-dimensional percolation�,
whereas, as will be seen, the number of long-range links
needed is linear in N �and actually lower than N�. It should
be noted that, however, for random long-range bonds,
O�N ln N� bonds are still needed to ensure that all nodes are
connected �3�.

The best practical solution may be to combine short-range
and long-range reinforcements. We find that, for k�1, and
small removal rates of the short-range bonds, the network
will remain connected �up to a statistically insignificant frac-
tion of the nodes� for any constant ratio of added long-range
bonds. Thus, the addition of relatively few random long-
range bonds can ensure percolation and global connectivity.

Recent studies of percolation on small-world networks
�35� have antecedents in the study of bond percolation �36�
whose methodology is the basis of our analysis. Small-
world-type graphs, with their mixture of ordered local and
random long-range bonds, present the statistical physicist
with an interesting percolation model. It turns out that the
construction of the original WS model—in which shortcuts
are created by reconnecting only one end of an original local
bond—renders it analytically hard to treat due to the corre-
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lations it introduces between the distribution of local and
long-range bonds. For this reason, most analytical work is
done using a variant of the model in which long-range bonds
are added between randomly chosen pairs of sites. This
change does not affect the small-world behavior of the re-
sulting graphs but makes them far easier to treat analytically;
we will refer to both the original and the variant as WS
models. Figure 1�c� gives an example of a variant WS graph.

Newman and Watts �35� have performed both analytical
and numerical analyses of site percolation on such a model
with a local bond coordination number k and a density � of
shortcuts added per local bond; no local bonds were re-
moved. Their results, suggesting site percolation on WS
graphs is similar to that on random graphs, were confirmed
by more rigorous work on the same system by Moore and
Newman �20,37�. In addition to demonstrating that site per-
colation on small-world networks is in the same universality
class as random graphs �i.e., mean-field�, Moore and New-
man presented a formal solution to the bond-percolation
problem with independent probabilities of local and long-
range bonds. They were able to solve this for k=1 and k
=2 to show that the percolation transition in such systems
also displays mean-field behavior.

Newman and Moore’s results on bond percolation in
small-world systems had in fact been anticipated some 17
years earlier by Kaufman and Kardar �36�, who solved the
bond-percolation problem on what would now be regarded
as a k=1 WS model with general nearest-neighbor and long-
range bond probabilities �ps , pl�, respectively. In Sec. II of
this paper we present a review of Kardar and Kaufman’s
method and their results describing the percolation transition.
In Sec. III we then use the formalism developed in Ref. �36�
to consider the critical percolation behavior of a standard WS
graph by imposing the relation pl=1− ps, corresponding to
one long-range bond being added to the system for every
local bond removed. We then solve the problem for a gener-
alized graph in which we allow the number of long-range
bonds added for every short-range bond removed to vary
continuously. We also present a brief discussion of percola-
tion on generalized WS graphs defined on k rings and higher-
dimensional lattices. An alternative approach to obtaining the
results using generating functions is presented in Appendixes
A and B.

Recently, some results regarding the appearance of first-
order phase transitions in other percolation models in net-
works were presented in Ref. �38�. Some relevant results on
bond percolation in networks were also noted in Ref. �39�.

C. Kasteleyn-Fortuin formalism

In Ref. �40� Kasteleyn and Fortuin presented an approach
for studying percolation, based on Potts models. In the Potts
model, to each site i of the network is assigned a spin si with
q discrete values of 1 , . . . ,q. Nearest-neighbor spins have an
attractive interaction, with a contribution to the energy of
−J�si,sj

, where J is a positive constant. In addition, a mag-
netic field is coupled to all spins, say favoring the sites with
si=1.

The limit q=2 of the Potts model is equivalent to the
well-known Ising system. For larger values of q the Potts

model also exhibits a phase transition but the transition typi-
cally becomes first order for large q. An important observa-
tion is that, for any value of q, at zero temperature the
ground consists of spins pointing in the same direction,
whereas when the temperature is increased, the system is
separated into clusters of spins pointing at different direc-
tions. Kasteleyn and Fortuin observed that at the limit q
→1 the Potts model reproduces the results of percolation,
with the appropriate mapping between the thermodynamic
variables and the percolation variables. In the next section
this mapping is discussed in detail.

II. PERCOLATION WITH NEAREST-NEIGHBOR AND
LONG-RANGE BONDS

A. Model and formalism

Quite generally, the Kasteleyn-Fortuin formalism �40� al-
lows us to relate the bond-percolation problem to the q→1
limit of the Potts model. Let us start by considering q-state
�Potts� spins si on a lattice of N sites. The spins are assumed
to be subject to both nearest-neighbor and infinite-range in-
teractions, with a total energy given by the Hamiltonian

− �H�K,J,h� = K�
�ij�

�si,sj
+ h�

i

�si,1
+

J

2N
�
i,j

�si,sj
. �1�

The long-range interaction has to be scaled by 1 /N to
achieve a proper thermodynamic limit, and h is a symmetry-
breaking field. The cluster-size generating function is given
in terms of the Potts free energy f�K ,h ,J� by

G�ps,pl,h� 	 �
s=1

�

ns�ps,pl�e−sh �2�

=− 
 � f

�q



q=1
. �3�

Here the nearest-neighbor bond-occupation probability is ps
=1−e−K, the long-range bond-occupation probability is
2pl /N=1−e−J/N �giving an average of Npl occupied long-
range bonds�, ns is the mean density of s-sized clusters, and
1−e−h is the ghost-bond probability. “Ghost bonds” are the
percolation equivalent of a magnetic field in the Potts model,
and can be considered as connecting each site in the lattice to
a single supersite; as a result any nonzero ghost-bond prob-
ability automatically results in the formation of an infinite
�spanning� cluster since all sites with occupied ghost bonds
form part of the same cluster. An example of a cluster in-
volving nearest-neighbor, long-range, and ghost bonds is
given in Fig. 2.

The main quantities of interest in percolation are the per-
colation probability, and the mean finite-cluster size:
P�ps , pl�, is defined as the probability that a site belongs to
the infinite cluster while S is the expected size of the cluster
of which the site is a member, averaged over all finite-cluster
sizes. They are given in terms of G�ps , pl ,h� by

P�ps,pl� = 1 +
�

�h
G�ps,pl,h = 0+� , �4�
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S�ps,pl� =
�2

�h2G�ps,pl,h = 0+� . �5�

To find the free energy of the Potts model, we introduce the
partition function

Z = �
−�

�

�
	=1

q

�dx	e−�NJ/2�x	
2
��

si�


exp�K�
�ij�

�si,sj
+ �

i

��h + Jx1��si,1
+ ¯ + Jxq�si,q

�� .

�6�

Carrying out the integrals over x and dropping terms of order
exp�log N /N�, we obtain the partition function for the origi-
nal Hamiltonian introduced in Eq. �1� as

Z = �
si�

e−H�K,J,h�/kT = e−Nf�K,J,h�, �7�

where f�K ,J ,h� is the free energy of our Potts model. If
instead we first sum over spins in the partition function of the
integrand in Eq. �6�, we obtain

Z = �
−�

�

�
	=1

q

dx	


exp�− �NJ/2��
	=1

q

xi
2 − Nf0�K,h + Jx1, . . . ,Jxq�� ,

�8�

where f0�K ,h+Jx1 , . . . ,Jxq� is the free energy of the nearest-
neighbor Potts model, H�K ,J=0,h1 , . . . ,hq�, in magnetic
fields h1=h+Jx1 , . . . ,hq=Jxq.

In the thermodynamic limit N→�, a saddle-point method
�41� relates the two free energies in Eqs. �7� and �8� by

f = min� J

2 �
	=1

q

x	
2 + f0�K,h + Jx1, . . . ,Jxq��

xn�

=
− J

2q
+ min�Jm +

Jq�q − 1�
2

m2 + f0�K,h + qJm��
m

,

�9�

where in the last line we have used the observation that the
x	 are the magnetizations of the Potts model �36,41� and
introduced a parametrization

x1 = 1/q + �q − 1�m, x2 = ¯ = xq = 1/q − m .

Setting q=1 and using Eq. �3�, we obtain the cluster-size
generating function for percolation with nearest-neighbor
and long-range bonds,

G�ps,pl,h� = − min�pl�m − 1�2 − G0�ps,h + 2plm��m,

�10�

where G0�p ,h� is the cluster-size generating function for per-
colation with only nearest-neighbor bonds. We note that m̄,
the value of m that minimizes the expression in Eq. �10�, is
the percolation probability P.

It is simple to calculate the function G0�p ,h� in one di-
mension using Eq. �2�; to form an s-size cluster requires a
sequence of �s−1� occupied bonds with an empty bond at
each end to terminate the sequence. Thus ns= �1− ps�2ps

s−1,
and performing the sum we find

G0�ps,h� =
�1 − ps�2

eh − ps
. �11�

Substituting this result into Eq. �10� we obtain the gener-
ating function for bond percolation on a graph with nearest-
neighbor and long-range bonds,

G�ps,pl,h� = − min�pl�m − 1�2 −
�1 − ps�2

eh+2plm − ps
�

m

. �12�

This is the result that we shall be using for the rest of this
paper; we note that for percolation in the context of small-
world networks only the h→0+ limit is relevant.

B. Mean-field percolation

Given that in the vicinity of the percolation transition we
expect P= m̄ to be small, we can perform an expansion of
Eq. �12� in powers of m to give �taking h=0�

G�ps,pl,0� = 1 − ps − pl min�plm
2�1 − 2pl

1 + ps

1 − ps
�

+
4pl

3m3

3

1 + 4ps + ps
2

�1 − ps�2 + O�m4��
m

. �13�

The phase transition thus occurs when the coefficient of m2

changes sign, giving a transition boundary

FIG. 2. Example of six sites forming part of a connected cluster
with nearest-neighbor bonds �solid lines�, long-range bonds �dot-
dash�, and ghost bonds �dashes�. The ghost bonds connect sites �1�,
�3�, and �5� to the ghost supersite, indicated by a black circle. For
any finite value of h, a finite proportion of sites in the graph will be
connected together via ghost bonds to the supersite, and so all clus-
ters involving ghost bonds must belong to the infinite cluster.
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2pl =
1 − ps

1 + ps
. �14�

Note that, since m cannot be negative, the presence of a
cubic term does not imply a first-order transition. Defining

t = 2pl�1 + ps

1 − ps
� − 1, �15�

we find the critical behavior at the transition to be

Gsing � �0, t � 0,

t3, t � 0,
� �16�

P = m̄ � �0, t � 0,

t , t � 0,
� and �17�

S � t−1. �18�

Using the standard definitions �42�, Gsing� t2−	, P� t�, and
S� t−�, this gives critical exponents

	 = − 1, � = 1, and � = 1, �19�

typical of mean-field behavior �43,44�, in agreement with the
results of Moore and Newman �37,45�.

III. GENERALIZED WATTS-STROGATZ GRAPHS

A. Percolation

The results of Sec. II, describing percolation with general
nearest-neighbor and long-range bond-occupation probabili-
ties, give a solution to the bond-percolation problem as de-
fined on a small-world graph �20,37� but are not quite appro-
priate to describing the percolative behavior of the graph
itself. Recall that, in the Watts-Strogatz model, the propor-
tions of long-range and nearest-neighbor bonds are not inde-
pendent but rather a fraction p of nearest-neighbor bonds is
replaced with long-range bonds. Thus pl and ps are firmly
connected by the relationship p= pl= �1− ps�. For any value
of p, the WS graph occupies a point in the �ps , pl� configu-
ration space of the more general model which satisfies this
relation, and varying p describes a trajectory through this
configuration space �see Fig. 3�a��. The appropriate equation
for describing the percolative behavior of the k=1 �nearest-
neighbor� Watts-Strogatz graph is, therefore, given by substi-
tuting for ps and pl in Eq. �12�, giving us the cluster-size
generating function for the WS model as

G�n,p,h� = − min�p�m − 1�2 −
p2

eh+2pm − 1 + p
�

m

. �20�

According to Eq. �15�, the controlling parameter t for this
system is given by t=3− p⇒2� t�3, and, therefore, we
expect the system to lie deeply in the percolating phase for
all values of p. Nonetheless, it is not difficult to solve Eq.
�20� numerically, and the resulting graphs of G, P, and S as
a function of p are illustrated in Fig. 4. The divergence of S
as p→0 indicates that p=0 represents some kind of critical
point. Additional evidence for this comes from the fact that,

while P comes in linearly to the limiting value P=�3 /2
�0.866 as p→0, at the exact point p=0 the bond configu-
ration of the system is that of a completely connected linear
chain and, therefore, P=1 is the only physically acceptable
value. Therefore, we are faced with a divergence in S and a
discontinuity in P at p=0. Taken together with the fact that p
is the only free parameter in the system once we have set
h=0, it is reasonable to take p rather than t to be the appro-
priate control parameter for percolation in the WS network.

With this in mind, we can compare the more general re-
sults of Eqs. �16�–�18� to the p→0 behavior of the WS net-
work, as indicated by Fig. 4,

G � p ,

P � const,

S � p−1. �21�

Evidently, only S performs according to the mean-field pre-
dictions; G is linear in p rather than the expected cubic be-
havior while P is constant rather than linear. Therefore, in
this limit the WS network exhibits critical exponents 	=1,
�=0, and �=1 in contrast to the mean-field values in Eqs.
�19�. We note for future reference that the critical exponents
found for the WS network satisfy the scaling exponent iden-
tity 	+2�+�=2.

Thus, the above results demonstrate that the WS graph
exhibits an unusual transition as p→0. Rather than the ge-
neric mean-field behavior typical of percolation with general
short- and long-range bond probabilities, the WS network
displays a transition between two percolating phases, with P
jumping discontinuously from a finite value to unity while S

FIG. 3. Small-world trajectories: the lines �a�–�c� show ex-
amples of small-world trajectories superimposed on the phase dia-
gram of the more general percolation system. The arrows show the
direction of decreasing p. Trajectory �d� shows a nonsmall-world
trajectory for which mean-field behavior holds at the transition.
Trajectory �a�, with n=1, corresponds to the standard Watts-
Strogatz graph and is clearly always percolating. Trajectories �b�
and �c�, with n=1 /4 and n=1 /8, respectively, are always in the
nonpercolating regime.
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diverges continuously as 1 / p. In the following section, by
considering a generalization of this model we provide an
analytical explanation for this behavior.

B. Scaling

The original choice of Watts and Strogatz, fixing the num-
ber of added long-range bonds to equal the number of short-
range bonds that were removed, was motivated by the desire
to compare the properties of graphs having the same total
number of bonds for different values of p. However, when
applying their model to physical systems, there is no reason

a priori to assume this to be the case. In some cases long-
range bonds are more “costly” than short-range bonds and
we would expect the relative number of long-range bonds in
the system to be fewer. Alternatively, in the context of neural
connections, suitable training of a growing cortex can result
in a relative increase in the number of long-range bonds.

With these considerations in mind, we now define a gen-
eralized WS graph by the simple expedient of allowing the
number of long-range bonds added for every short-range
bond removed to vary continuously; Fig. 1�d� gives an ex-
ample of such a generalized graph. Thus for such graphs, the
relationship between ps and p= pl is given by

p = pl = n�1 − ps� . �22�

An illustration of some of the trajectories for different values
of n is given in Fig. 3. Substituting Eq. �22� into Eq. �12�
gives us the cluster-size generating function for nearest-
neighbor generalized Watts-Strogatz graphs,

G�n,p,h� = − min�f�m,n,p,h��m, �23�

where for convenience we have defined

f�m,n,p,h� = p�m − 1�2 −
�p/n�2

eh+2pm − 1 + p/n
. �24�

We now restrict our attention to trajectories along which
P is small in the p→0 limit, which we expect to be those in
the immediate vicinity of, and beneath, the transition line in
Fig. 3. While the restriction on m being small means that any
results derived using it are not strictly applicable to the n
=1 case treated numerically in Sec. III A, we expect that
universal quantities such as critical exponents should agree
in both cases. With this in mind, we make a small-m expan-
sion of Eq. �24� to give the equivalent of Eq. �13�.

We start with the case h=0. The free energy then becomes

f�m,n,p,h = 0� = p�1 −
1

n
� + pm2�1 + 2p − 4n�

+
4

3
pm3�6n2 − 6pn + p2� . �25�

Considering the coefficient of m2, we immediately see that
the percolation transition occurs when

n =
1 + 2p

4
. �26�

Therefore, in the p→0 limit, the transition line in Fig. 3
comes down linearly with a slope of −1 /4. As in Eq. �13�,
the presence of a cubic term does not imply a first-order
transition since m̄= P is confined to the range �0,1�. Defining
�n=n−1 /4, and setting �f /�m=0 to obtain m̄, we find

P = m̄ = �0 n �
1

4
�1 + 2p�

4�n − 2p

12n2 − 12np + 2p2 n �
1

4
�1 + 2p� � . �27�

This result is only valid for m̄1, and so it follows that our
expression for f in Eq. �25� is only valid for n�1 /4. We can

FIG. 4. Numerical results for the standard �n=1� Watts-Strogatz
network: �a� cluster size generating function G�p�, �b� percolation
probability P�p�, and �c� the mean finite-cluster size S�p�.
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write the singular parts of G and P in the p→0 limit as

Gsing�p → 0;n� � �0, �n � p/2,

p�n
3, �n � p/2,

� �28a�

P�p → 0;n� = m̄ � �0, �n � p/2,

4�n − 2p , �n � p/2.
� �28b�

Once again, these results are quite distinct from the mean-
field predictions of Eqs. �16� and �17�. Moreover, the results
for �n� p /2, giving 	=1 and �=0 with P tending linearly to
a finite constant as p→0, are in accordance with the numeri-
cally obtained behavior of Eqs. �21�, arguing for the univer-
sality of Eqs. �28a� and �28b� at all n�1 /4

Note that the result from Eq. �28b�, in which increasing p
reduces the percolation probability, should not be surprising
since the total number of bonds in the system is proportional
to �pl+ ps�=1+ p�1−1 /n�. Therefore, for n�1, increasing p
reduces the total number of bonds in the system. This can
also be understood by considering the convex nature of the
transition line in Fig. 3; all trajectories with 1

4 �n�
1
2 will

intersect the line twice: once at p=0 and again at p�2�n.
Moreover, the second transition does behave in the mean-
field manner, meaning that P→0 linearly as we approach it.
Since when �n1 the distance between the two transitions
becomes vanishingly small, the percolation probability P
must decrease from P=4�n to P=0 linearly as we increase p
through the increment from 0 to �n /2.

We now turn to calculating the mean finite-cluster size, S,
which is the equivalent of the susceptibility for a percolation
system. Equations �4� and �5� imply that we can write

S = 
 �m̄

�h



h=0+
. �29�

We, therefore, need to find the h dependence of m̄. This is
simple to do if we notice that by defining

m̂ = m +
h

2p
,

we may express f�m ,h� as

f�m,h� = f�m̂,0� −
h2

4p
+ hm̂ + h . �30�

Expanding G for small p, m, �n, and h, we find

G = p min�3

4
+

h

2p
+ 2m2�p − 2�n� +

mh

p
�2p − 4�n − 1�

+
h2

4p2 �2p − 4�n − 1� +
1

2
�m −

h

2p
�3�

m

. �31�

Minimizing the free energy with respect to m and expanding
to lowest orders in p, �n, and h, one obtains the magnetiza-
tion as

m̄ = �
h

p�4p − 8�n�
, �n � p/2,

16�n − 8p

3
−

h

p�4p − 8�n�
, �n � p/2. � �32�

Substituting this value into Eq. �31�, we get the free-energy
expression near the singular point as

G = p�3

4
+

h

2p
−

3h2

8p2�2�n − p�� , �33�

for �n� p /2, and

G = p�3

4
+

83

2�33�
�2�n − p�3 +

h

2p
−

3h2

8p2�2�n − p�� ,

�34�

for �n� p /2. This implies that the singular part of the free
energy can be written as

Gsing = p4x3�x�h̃� , �35�

where

x =
�n

p
−

1

2
, �36�

h̃ =
h

p3x2 , �37�

and � is a universal scaling function, obeying

�x�h̃� � �h̃2 x � 0,

3

2
− h̃ x � 0. � �38�

Therefore, in the p→0 limit, we find the critical behavior
of S as p→0 to be

S�p → 0;n� � �− n/�2�np� �n � p/2,

�1/2 − n�/�2�np� �n � p/2,

1/�4p2� �n = p/2.
� �39�

The critical exponent for the divergence of S is, therefore,
�=1 for �n�p /2, and �=2 for �n= p /2. These results for S
show a number of interesting points. The first is that, for
�n�p /2, S diverges in agreement both with the mean-field
prediction and the numerical result for n=1. We also note
that the amplitude for the divergence at �n= p /2+ is equal to
that for �n= p /2−. However, for �n= p /2 precisely, the perco-
lation transition is accompanied by a different divergence in
S. Thus, while G and P display the same singular behavior
for �n= p /2 and �n� p /2, the two cases are differentiated by
the order of divergence in S.

C. Other lattices

Given the rich behavior of percolation on the simple WS
model, it is natural to enquire if similar behavior exists when
the underlying lattice structure is of a higher dimension. Re-
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turning to the considerations of Sec. II, we note that to treat
the higher-dimensional case all we need do is to substitute
the appropriate G0 into Eq. �10�. Unfortunately, the exact
form of G0 is not known for dimensions higher than one �not
counting the infinite-dimensional Bethe lattice�, and so an
analytic solution of the higher-dimensional case is not pos-
sible by this method. Nevertheless, enough is known about
the properties of G0�ps ,h� in higher dimensions to make
some general statements about percolation in such graphs. In
particular, close to the percolation transition we can write a
form equivalent to the expansion in Eq. �13�, as

G�ps,pl,0� = − pl + G0�ps,0� − min�plm
2�1 − 2plS0�ps��

+
4

3
pl

3U0�ps�m3 + O�m4��
m

,

where S0=�2G0 /�h2 �h=0+ is the mean finite-cluster size of the
nearest-neighbor model on the underlying lattice, and U0=
−�3G0 /�h3 �h=0�0. There will thus be a percolation transition
at the point 2pl=S0

−1, again governed by mean-field expo-
nents.

This result provides enough information to draw some
conclusions about the behavior of generalized WS graphs in
higher dimensions. In particular, in the one-dimensional case
it was the intersection of small-world trajectories with the
critical point at p=0 that gave rise to all the interesting be-
havior as p→0. In higher dimensions, however, small-world
trajectories as defined in Eq. �22� do not encounter any criti-
cal points as p→0. Thus, we would not expect any critical
behavior other than a mean-field transition should they pass
through the transition line �in the �pl , ps� space� at some
point other than the origin.

IV. CONCLUSION AND DISCUSSION

We have examined the percolation properties of a class of
WS graphs generalized by allowing the proportion of long-
range and short-range bonds to vary with a parameter n ac-
cording to pl=n�1− ps�	 p. Such graphs then lie along
small-world trajectories parametrized by n and p in the space
of graphs with general �ps , pl�. Previous solutions of bond
percolation on graphs with general �ps , pl� have been shown
to give results in the same class as random graphs �20,36,37�,
with the transition between the percolating and nonpercolat-
ing phases controlled by mean-field exponents 	=−1, �=1,
and �=1.

An interesting aspect of the original Watts-Strogatz
model, and its generalization presented here is the interplay
between the deleted short-range links and the added short-
cuts. In this paper we have discussed several aspects of this
interplay, including the discontinuous jump between the two
percolating phases at p=1 and the critical behavior near the
percolation phase-transition point.

We have presented an analytical solution of generalized
WS graphs, valid for n�1 /4, and a numerical solution for
the standard �n=1� WS graph, which together show that the
critical behavior of such networks in the p→0 limit falls into
one of three regimes of behavior depending upon the value

of n. Moreover, in none of these regimes is the transition
described by standard mean-field. Trajectories for which n
�1 /4 display a transition between two percolating phases in
which the percolation probability, P, jumps discontinuously
from a finite value to unity at the transition point while the
mean finite-cluster size, S, diverges. The critical exponents
associated with the transition are 	=1, �=0, and �=1. Tra-
jectories with n�1 /4 and n=1 /4 both display a percolation
transition with a P jumping discontinuously from zero to
one, and critical exponents 	=2 �46� and �=0; however they
are differentiated by the behavior of S, which diverges with
exponent �=1 for n�1 /4 and �=2 for n=1 /4.

We have further proposed that all three regimes of behav-
ior can be unified within a single scaling form for the cluster-
size generating function, G, which is valid in the vicinity of
the critical point p=0. According to this proposal, the failure
of the critical exponents for n�1 /4 to satisfy the identity
	+2�+�=2 can be related to asymptotic zeros of the scal-
ing function. We have also considered the percolative behav-
ior of generalized WS graphs on higher-dimensional lattices.
While no exact solution exists, general considerations of the
form of the phase diagram for systems with general �ps , pls�
indicate that there should not be any critical behavior along
small-world trajectories.

To conclude, we note that, as far as we are aware, studies
of the dependence of the graph diameter, l, on the long-range
bond probability p in WS graphs have so far focused exclu-
sively on the n=1 case. However, our analysis of bond per-
colation in generalized WS graphs has shown that varying n
can have important consequences in case of a one-
dimensional underlying lattice. In particular, according to the
form of our scaling function, in the p→0 limit it is the
quantity �n−1 /4� / p that is the physically important param-
eter in percolation. An interesting question, therefore, arises
as to whether the graph diameter l�p� has a corresponding
dependence on n, and in particular whether the value n
=1 /4 has a physical significance beyond the percolation be-
havior presented here.

It should be noted that the original WS model has been
extended mainly to k rings, rings where each node is con-
nected to its k nearest neighbors on each side �for a total of
2k nearest neighbors bonds per site�. While this model is also
one dimensional, and does not percolate without long-range
bonds �unless ps=1�, the singular behavior as p→0 could
well be different from the case k=1. For a k ring, a lower
bound on the asymptotic probability that a node does not
belong to a long “supernode” extending to its left behaves as
�1− ps�k. Using Eq. �A6� with ps� replacing ps, and with the
approximation 1− ps���1− ps�k, one obtains that for k�1,
y→0 for ps→1. Therefore, the behavior near the fully con-
nected ring state is analytic—in contrast to the singly con-
nected ring, no jump discontinuity exists.
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APPENDIX A: GENERATING FUNCTION
APPROACH

In this Appendix we develop a different approach to
studying the percolation transition in small-world networks.
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We use the generating function formalism, stressing the to-
pological rather than thermodynamic structure of the net-
work. The percolation process can be perceived as consisting
of two stages. In the first stage short-range links are removed
from the network with probability 1− ps. The remaining net-
work consists of isolated islands of varying sizes. We will
term a group of nodes connected by a chain of short-range
links a supernode. This construction can be viewed as a
renormalization of the network, where each supernode is a
node in the new network, having weight proportional to its
original size. In the second stage long-range links are added
to the network, and we study the connectivity between su-
pernodes through these long-range links. The probability,
P�d�, of a node to belong to a supernode of size d is the
number of possible consecutive sets of size d including this
node �which is just d� times the probability of the d−1 links
between these d nodes to be intact, and the two links leading
to nodes neighboring this supernode to be removed. There-
fore,

P�d� = dps
d−1�1 − ps�2, �A1�

and the generating function for the supernode size is

S�x� = �
d=1

�

dps
d−1�1 − ps�2xd =

x�1 − ps�2

1 − xps
. �A2�

Consider now the distribution of the number of long-
range links emanating from a supernode of size d; since there
are plN edges having 2plN ends �links� randomly distributed
on the ring, we expect a Poisson distribution of the links with
mean 2pl per node, or 2dpl per supernode. Therefore, the
probability of having k links from a supernode is

P�k�d� =
�2dpl�ke−2dpl

k!
, �A3�

and the joint generating function for supernode size and de-
gree is

D�x,y� = �
d,k

P�d�P�k�d�xdyk = �1 − ps�2 xe2pl�y−1�

�1 − psxe2pl�y−1��2 .

�A4�

To calculate the distribution of component sizes obtained
by following a link, one should notice that the probability of
reaching each node by following a long-range link is the
same. Therefore, the probability of reaching a supernode is
proportional to its size and similar to the probability that a
node belongs to a supernode of size d. Hence, the distribu-
tion of cluster sizes reached by following a link �which is
similar to the distribution of cluster sizes in general due to
the Poisson distribution� is given by the self-consistent equa-
tion

y = D�x,y� . �A5�

From this self-consistency condition all cluster and percola-
tion properties can be obtained. In particular, when finding
the solution of the equation

yp = D�1,yp� , �A6�

if yp=1 there exists no giant component while for yp�1 a
giant component exists. The size of the giant component is
determined to be S=1−yp. As discussed before, the behavior
as ps→1, with pl=1− ps is special: as this limit is ap-
proached, S→

�3
2 �0.866, with a discontinuous jump to S

=1 for ps=1 and pl=0.
Expanding Eq. �A5� in powers of � for y=1−� and x=1

gives the phase-transition behavior for the model. One ob-
tains

1 − � = 1 +
2pl�ps + 1�

ps − 1
� +

4pl
2�ps

2 + 4ps + 1�
2�ps − 1�2 �2 + . . . ,

�A7�

leading to the critical percolation threshold at

2pl�ps + 1�
1 − ps

= 1. �A8�

Near the threshold it can be seen that the quadratic term in �
will always exist unless ps→1 or pl→0. For a generalized n
the behavior depends on the expansion of the linear terms in
� as a function of the deviation from the critical point. Fur-
thermore, for the original WS model with p= pl=1− ps it is
easily seen that the whole 0� p�1 range is within the per-
colating regime.

APPENDIX B: CRITICAL EXPONENTS FOR THE k RING

A full analytic solution of the k-ring problem is compli-
cated, as there any many different possible configurations for
a connected component. It is, therefore, difficult to account
for all possible cluster structures. An extreme simplification
that allows for exact solution is a ring in which every pair of
nearest neighbors is connected by k links rather than one.

Let us begin with a configuration in which each node is
connected to each of its two nearest neighbors with k links.
Then, a fraction 1− ps� of the short-range links is removed
and with probability pl�=n�1− ps�� a long-range links is
added. As the number of links in the initial ring is now Nk,
the total number of long-range links added is Nkpl�. The
probability of disconnecting a pair of near neighbors is
�1− ps��

k. Thus, this model is equivalent to the singly con-
nected ring with

pl = kpl�, �B1�

and

ps = 1 − �1 − ps��
k. �B2�

For k=1 this model is simply the singly connected ring
studied before. For k�1, one may use previous results, such
as Eq. �A8� in conjunction with Eqs. �B1� and �B2�, to find
the percolation threshold and other properties of the network.
In the limit of ps→1 this behaves similarly to the one-ring
case, with n→�, as the ratio of added shortcuts to removed
short-range links becomes infinite. This leads to the forma-
tion of dense graphs of supernodes, and thus the singularity
at ps→1 vanishes.
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